Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 14(1): 2320, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282035

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations. Here, we examined how these two groups of modulators might interact as well as mutational effects on ASIC1a gating and its modulation by divalent cations. Our results indicate that binding of divalent cations to an acidic pocket site plays a key role in gating modulation of the channel.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Cátions Bivalentes/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Mutação
2.
J Med Chem ; 65(15): 10419-10440, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35862732

RESUMO

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.


Assuntos
Fator XIa , Piridinas , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Cães , Desenho de Fármacos , Fator XIa/metabolismo , Piridinas/farmacologia , Coelhos , Ratos
3.
ACS Med Chem Lett ; 12(11): 1853-1860, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795876

RESUMO

Drug discovery building blocks available commercially or within an internal inventory cover a diverse range of chemical space and yet describe only a tiny fraction of all chemically feasible reagents. Vendors will eagerly provide tools to search the former; there is no straightforward method of mining the latter. We describe a procedure and use case in assembling chemical structures not available for purchase but that could likely be synthesized in one robust chemical transformation starting from readily available building blocks. Accessing this vast virtual chemical space dramatically increases our curated collection of reagents available for medicinal chemistry exploration and novel hit generation, almost tripling the number of those with 10 or fewer atoms.

4.
Future Med Chem ; 13(19): 1639-1654, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34528444

RESUMO

Background: Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. Methodology & Results: The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutional neural network algorithm and was trained on between 1000-10,000 internal data points per predicted parameter. gTPP demonstrated stronger predictive power than pretrained commercial ADME models and automatic model builders. Through a novel logging method, the authors report gTPP usage for more than 200 Janssen drug discovery scientists. Conclusion: The investigators successfully enabled the rapid and systematic implementation of predictive ML tools across a drug discovery pipeline in all therapeutic areas. This experience provides useful guidance for other large-scale AI/ML deployment efforts.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento de Medicamentos , Inibidores das Enzimas do Citocromo P-450/química , Humanos , Modelos Moleculares
5.
Commun Biol ; 4(1): 174, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564124

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cinética , Potenciais da Membrana , Moduladores de Transporte de Membrana/química , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Taquifilaxia
6.
Bioorg Med Chem Lett ; 30(23): 127602, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038544

RESUMO

G-protein coupled receptor kinase 2 (GRK2), which is upregulated in the failing heart, appears to play a critical role in heart failure (HF) progression in part because enhanced GRK2 activity promotes dysfunction of ß-adrenergic signaling and myocyte death. An orally bioavailable GRK2 inhibitor could offer unique therapeutic outcomes that cannot be attained by current heart failure treatments that directly target GPCRs or angiotensin-converting enzyme. Herein, we describe the discovery of a potent, selective, and orally bioavailable GRK2 inhibitor, 8h, through high-throughput screening, hit-to-lead optimization, structure-based design, molecular modelling, synthesis, and biological evaluation. In the cellular target engagement assays, 8h enhances isoproterenol-mediated cyclic adenosine 3',5'-monophosphate (cAMP) production in HEK293 cells overexpressing GRK2. Compound 8h was further evaluated in a human stem cell-derived cardiomyocyte (HSC-CM) contractility assay and potentiated isoproterenol-induced beating rate in HSC-CMs.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Ftalazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Ensaios Enzimáticos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Ftalazinas/síntese química , Ftalazinas/farmacocinética , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Relação Estrutura-Atividade
7.
Org Lett ; 22(15): 5828-5832, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702238

RESUMO

A tandem one-pot reaction featuring a cross-coupling followed by an intramolecular oxetane ring opening by mild nucleophiles is reported. The overall transformation comprises a carbon-carbon bond formation along with a carbon-heteroatom bond construction providing diverse multicyclic ring systems with a pendant hydroxymethyl handle for further elaboration. This approach constitutes a convergent method for rapid access to various scaffolds. Furthermore, a comparison of computed low-energy conformers is presented to rationalize instances in which cyclization was not observed.

8.
J Med Chem ; 63(16): 8667-8682, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32243158

RESUMO

Artificial intelligence and machine learning have demonstrated their potential role in predictive chemistry and synthetic planning of small molecules; there are at least a few reports of companies employing in silico synthetic planning into their overall approach to accessing target molecules. A data-driven synthesis planning program is one component being developed and evaluated by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, comprising MIT and 13 chemical and pharmaceutical company members. Together, we wrote this perspective to share how we think predictive models can be integrated into medicinal chemistry synthesis workflows, how they are currently used within MLPDS member companies, and the outlook for this field.


Assuntos
Técnicas de Química Sintética/métodos , Química Farmacêutica/métodos , Aprendizado de Máquina , Indústria Química/métodos , Descoberta de Drogas/métodos , Modelos Químicos , Pesquisa Farmacêutica/métodos
9.
J Med Chem ; 63(5): 1929-1936, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31913036

RESUMO

The topic of gender equality within the United States workforce is receiving a great deal of attention. The field of chemistry is no exception and is increasingly focused on taking steps to achieve gender diversity within the chemistry workforce. Over the past several years, many computational chemistry groups within large pharmaceutical companies have realized growth in the number of women, and here we discuss the key factors that we believe have played a role in attracting and retaining the authors of this review as computational chemists in pharma. Furthermore, we combine our professional experiences in the context of how computational methodology and technology have evolved over the past decades and how that evolution has facilitated the inclusion of more women into the field. Our hope is to be a part of a solution and provide insight that will allow the chemistry workforce to continue to make steps forward in attaining gender diversity in the workplace.


Assuntos
Descoberta de Drogas/tendências , Indústria Farmacêutica/tendências , Identidade de Gênero , Sexismo/tendências , Recursos Humanos/tendências , Feminino , Humanos , Estados Unidos
10.
Bioorg Med Chem Lett ; 29(20): 126668, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519374

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by chronically elevated plasma glucose levels. The inhibition of glucagon-induced hepatic glucose output via antagonism of the glucagon receptor (GCGR) using a small-molecule antagonist is a promising mechanism for improving glycemic control in the diabetic state. The present work discloses the discovery of indazole-based ß-alanine derivatives as potent GCGR antagonists through an efficient enantioselective synthesis and structure-activity relationship (SAR) exploration and optimization. Compounds within this class exhibited excellent pharmacokinetic properties in multiple preclinical species. In an acute dog glucagon challenge test, compound 13K significantly inhibited glucagon-mediated blood glucose increase when dosed orally at 10 mg/kg.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/síntese química , Indazóis/química , Receptores de Glucagon/antagonistas & inibidores , beta-Alanina/síntese química , Sequência de Aminoácidos , Animais , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade , beta-Alanina/farmacocinética
11.
Bioorg Med Chem Lett ; 29(15): 1974-1980, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31138472

RESUMO

A novel series of indazole/indole derivatives were discovered as glucagon receptor (GCGR) antagonists through scaffold hopping based on two literature leads: MK-0893 and LY-2409021. Further structure-activity relationship (SAR) exploration and optimization led to the discovery of multiple potent GCGR antagonists with excellent pharmacokinetic properties in mice and rats, including low systemic clearance, long elimination half-life, and good oral bioavailability. These potent GCGR antagonists could be used for potential treatment of type II diabetes.


Assuntos
Indazóis/química , Receptores de Glucagon/antagonistas & inibidores , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Med Chem ; 61(22): 10276-10298, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30339387

RESUMO

A novel series of 6-benzhydryl-4-amino-quinolin-2-ones was discovered as cannabinoid type 1 receptor (CB1R) inverse agonists based on the high-throughput screening hit, compound 1a. Structure-activity relationships were studied to improve in vitro/in vivo pharmacology and restrict distribution to the peripheral circulation. We adopted several strategies such as increasing topological polar surface area, incorporating discrete polyethylene glycol side chains, and targeting P-glycoprotein (P-gp) to minimize access to the brain. Compound 6a is a P-gp substrate and a potent and highly selective CB1R inverse agonist, demonstrating excellent in vivo metabolic stability and a low brain to plasma ratio. However, brain receptor occupancy studies showed that compound 6a may accumulate in brain with repeat dosing. This was evidenced by compound 6a inhibiting food intake and inducing weight loss in diet-induced obese mice. Thus, a strategy based on P-gp efflux may not be adequate for peripheral restriction of the disclosed quinolinone series.


Assuntos
Agonismo Inverso de Drogas , Quinolonas/química , Quinolonas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Quinolonas/metabolismo , Quinolonas/farmacocinética , Ratos , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade , Distribuição Tecidual
13.
J Comput Aided Mol Des ; 31(3): 267-273, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27995515

RESUMO

Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.


Assuntos
Desenho Assistido por Computador , Descoberta de Drogas/métodos , Indústria Farmacêutica/métodos , Modelos Moleculares , Química Farmacêutica , Biologia Computacional , Desenho de Fármacos , Pesquisa , Software
14.
J Comput Aided Mol Des ; 30(12): 1139-1141, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28013427

RESUMO

In May and August, 2016, several pharmaceutical companies convened to discuss and compare experiences with Free Energy Perturbation (FEP). This unusual synchronization of interest was prompted by Schrödinger's FEP+ implementation and offered the opportunity to share fresh studies with FEP and enable broader discussions on the topic. This article summarizes key conclusions of the meetings, including a path forward of actions for this group to aid the accelerated evaluation, application and development of free energy and related quantitative, structure-based design methods.


Assuntos
Descoberta de Drogas/métodos , Preparações Farmacêuticas/química , Desenho de Fármacos , Indústria Farmacêutica , Humanos , Estrutura Molecular , Software , Relação Estrutura-Atividade , Termodinâmica
15.
Bioorg Med Chem Lett ; 23(23): 6363-9, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24138939

RESUMO

Structure-activity relationship (SAR) studies on a highly potent series of arylamide FMS inhibitors were carried out with the aim of improving FMS kinase selectivity, particularly over KIT. Potent compound 17r (FMS IC50 0.7 nM, FMS cell IC50 6.1 nM) was discovered that had good PK properties and a greater than fivefold improvement in selectivity for FMS over KIT kinase in a cellular assay relative to the previously reported clinical candidate 4. This improved selectivity was manifested in vivo by no observed decrease in circulating reticulocytes, a measure of bone safety, at the highest studied dose. Compound 17r was highly active in a mouse pharmacodynamic model and demonstrated disease-modifying effects in a dose-dependent manner in a strep cell wall-induced arthritis model of rheumatoid arthritis in rats.


Assuntos
Amidas/farmacologia , Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
16.
Curr Top Med Chem ; 12(11): 1271-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22571789

RESUMO

A small-molecule drug discovery effort can benefit from having several chemical series. Where multiple series are not available, it is often the goal of a project to find novel scaffolds. Structural studies of ligand/protein complexes provide important information on the interactions driving binding. By generalizing these, it is possible to find molecules lacking in similarity in their connectivity yet retaining the ability to interact with the same target protein. Our studies on inhibitors of the cFMS tyrosine kinase provide a dramatic example of three different chemical series that make the same key interactions with the target protein. Collectively, these structural data provide a striking example of the pharmacophore hypothesis at work. In addition, they should prompt one to employ a broad approach when attempting scaffold hopping or any search for a novel series. It is clear that molecules that bind with similar interactions to a target need not possess 2-dimensional molecular similarity.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
17.
J Med Chem ; 54(22): 7860-83, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22039836

RESUMO

A class of potent inhibitors of colony-stimulating factor-1 receptor (CSF-1R or FMS), as exemplified by 8 and 21, was optimized to improve pharmacokinetic and pharmacodynamic properties and potential toxicological liabilities. Early stage absorption, distribution, metabolism, and excretion assays were employed to ensure the incorporation of druglike properties resulting in the selection of several compounds with good activity in a pharmacodynamic screening assay in mice. Further investigation, utilizing the type II collagen-induced arthritis model in mice, culminated in the selection of anti-inflammatory development candidate JNJ-28312141 (23, FMS IC(50) = 0.69 nM, cell assay IC(50) = 2.6 nM). Compound 23 also demonstrated efficacy in rat adjuvant and streptococcal cell wall-induced models of arthritis and has entered phase I clinical trials.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Imidazóis/síntese química , Piperidinas/síntese química , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/etiologia , Artrite Experimental/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Piperidinas/farmacocinética , Piperidinas/farmacologia , Conformação Proteica , Ratos , Ratos Endogâmicos Lew , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
18.
Methods Enzymol ; 493: 137-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21371590

RESUMO

Fragment-based drug discovery has emerged over the past 15 years as an effective lead discovery paradigm that is complementary to traditional high-throughput screening. The starting point for fragment-based drug discovery is the identification of low-molecular weight, typically low-affinity compounds that bind to a target of interest. These fragments can then be elaborated by growing or linking to create compounds with high affinity and selectivity. A wide variety of techniques from the computational chemistry tool chest can be applied in a fragment-based project. The computational tools are equally useful in combination with experimental-binding determination or in a completely in silico design procedure. This chapter will outline these techniques, their utility, and their validation in the design of novel lead compounds.


Assuntos
Bibliotecas de Moléculas Pequenas , Biologia Computacional , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Ligação Proteica
19.
Protein Sci ; 20(4): 670-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21308848

RESUMO

A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.


Assuntos
Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Endocanabinoides , Glicerídeos/química , Glicerídeos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...